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Randomness in the material properties is inherent in all engineering materials.
Composites exhibit a greater scatter compared to conventional materials because of the
larger number of parameters associated with its fabrication and manufacturing. For
accurate prediction of its behavior, the composite material properties have been modelled as
random variables in the present study. Higher order shear deformation theory including
rotatory inertia e!ects has been employed in developing the system equations and "rst order
perturbation technique has been adopted for the solution. An approach has been presented
for obtaining the analytical solution for generalized eigenvalue problem associated with free
vibrations. Mean and variance of the natural frequency have been obtained for cross-ply
spherical laminates projected in rectangular plan form with di!erent boundary conditions.

( 2001 Academic Press
1. INTRODUCTION

The use of laminated curved panels is common in many engineering "elds. Composites have
the speci"c advantage that their structural characteristics can be tailored to suit the design
requirements. These are "nding increased use in primary and secondary structures in
aerospace projects. The composites, like most structural materials, are fabricated with
appropriate quality control. The control works under "nite limits due to practical and
economic considerations. This results in variation in material properties, making them
random. The extent and nature of the variations depend on the strictness of the quality
control and the characteristics of the parameters involved with the manufacturing and
fabrication process. The variations in the material properties of composite lamina are
greater in comparison with the conventional materials as there are larger number of
parameters involved*spatial distribution and orientation of the "bers, "bers volume
fraction, void fraction, interfacial bond characteristics, thickness of laminae, curing process,
etc. Variations in these parameters are re#ected as variations in the basic lamina material
properties. Assuming the material properties as deterministic and thus using their average
values ignores such variation and introduces approximation in the analysis and design. In
view of this, sometimes the design may be non-conservative.

For accurate prediction of the behavior, suitable modelling of the material properties is
essential. This may be appropriately handled by modelling the properties as random
variables (RVs).

1.1. LITERATURE REVIEW

Extensive literature is available on response analysis of the deterministic structures to
random excitations. Nigam and Narayanan [1] have considered various types of loading in
0022-460X/01/270321#18 $35.00/0 ( 2001 Academic Press



322 B. N. SINGH E¹ A¸.
this class of problems. However, structural analysis with random material properties is not
adequately reported.

Some literature is available for the analysis of conventional material structures with
random material properties. Ibrahim [2, 3] has presented a review of structural dynamics
with parameters uncertainties. Singh and Lee [4] have employed direct product technique
to obtain statistical properties of natural frequency for single degree mass}damper system
with randomness in damping and compared the results with Monte-Carlo simulation
(MCS) and perturbation technique (PT). Chen et al. [5] have developed a probabilistic
method to evaluate the e!ect of uncertainty in geometrical and material properties for truss
and beam problems. The results for mean and standard deviation of displacement and
rotation have been obtained. Bliven and Soong [6] have analyzed simply supported
Euler}Bernoulli beam with randomly varying sti!ness using PT. Mean and standard
deviation of frequency have been evaluated with respect to correlation distance. Collins and
Thomson [7] have studied longitudinal vibration of a four-degree-of-freedom "xed}"xed
rod with uncertain area, mass and sti!ness using PT. Prasthofer and Beadle [8] have
evaluated the dynamic response of single-degree-of-freedom structures with uncertainty in
sti!ness to deterministic impulsive excitation using PT. Shinozuka and Astil [9] have
employed a numerical technique to obtain statistical properties of eigen values of
spring-supported columns with deterministic axial loading and random material and
geometrical properties. The performance of PT has been compared with the approach used.
Carvani and Thomson [10] have studied the in#uence of damping uncertainty on frequency
response of a linear multi-degree-of-freedom system and compared the results with MCS.
Chen and Soroka [11] have also studied the response of a multi-degree-of-freedom system
with random properties to deterministic excitations employing PT. Liu et al. [12] have used
probabilistic "nite element to study second order statistics of the dynamic response of
random truss structure. Vaicatis [13] has obtained the initial free vibration response of
beams with mass and #exural rigidity as random. Chen and Zang [14] have analyzed
stochastic structures subjected to deterministic excitations. The sensitivity of the response
has also been obtained with random design parameters such as beam cross-sectional area,
plate thickness, etc. Exact roots of frequency equation of the beam system with randomness
in end conditions have been obtained by Low [15]. A method has been presented by Zang
and Chen [16] for obtaining standard deviation (SD) of eigenvalues and eigenvectors for
a multi-degree-of-freedom random system. Grigoriu [17] has developed a method for
calculating the probabilistic characteristics of the eigenvalues of stochastic symmetric
matrices. Dynamic and elasticity problems have been considered to demonstrate the
approach. Gorman [18] has investigated free vibration of thin rectangular plates with
variable lateral edge support by the method of superposition adopting the classical laminate
theory (CLT).

Limited literature is available on analysis of composite structures with random material
properties. Leissa and Martin [19] have analyzed composite material panels with variable
"ber spacing using CLT. Free vibration and buckling of #at plates have been analyzed,
taking them to be macroscopically orthotropic but non-homogeneous because of variable
"ber spacing. Results have been obtained for glass, boron and graphite "bers with epoxy
matrices for simply supported square plates. Salim et al. [20}22] have employed "rst order
PT (FOPT) for analysis of composite plates using CLT with random material properties
and have obtained the response statistics for static de#ections, natural frequencies and
buckling loads of rectangular plates. The static response statistics of graphite}epoxy
composite laminates with randomness in material properties to deterministic loading have
been obtained by Navneethraj et al. [23] using combination of "nite element method and
MCS. Yadav and Verma [24] have investigated free vibration and initial buckling for
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circular cylindrical shells with random material properties using CLT and FOPT.
Numerical results for mean and SD of the "rst three natural frequencies have been obtained
for axisymmetric vibrations of specially orthotropic and antisymmetric laminates for simply
supported ends. Results have also been obtained for specially orthotropic laminates in
asymmetric vibrations. Mean and SD of initial buckling load for specially orthotropic shells
subjected to axial compression have been obtained by Yadav and Verma [25].

Analysis of composite spherical panels with random material properties is not reported in
literature. The present study aims at developing an analysis approach to evaluate the
second order statistics of eigensolution for such panels including rotatory inertia e!ects
using FOPT [16, 20]. Higher order shear deformation theory (HSDT) has been employed
to account for the transverse shear e!ects. This approach is valid for small dispersion of
material properties. As this condition is met in most applications, it does not put any real
limitations on the approach. The numerical results for mean and SD for the natural
frequencies have been obtained with known second order statistics of the random material
properties for cross-ply symmetric panels having square plan form with various boundary
conditions.

2. PROBLEM FORMULATION

2.1. GOVERNING EQUATIONS

The system equations, derived by equilibrium and compatibility considerations, do not
change in the random environment and appear similar to the deterministic case. Figure 1
shows the spherical panel element. Let (m

1
, m

2
, f) denote the orthogonal curvilinear

co-ordinates (or shell co-ordinates) such that the m
1

and m
2

curves are lines of curvature on
the mid-surface f"0, and f curves are straight lines perpendicular to the mid-surface.
R

1
and R

2
denote the values of the principal radii of curvatures of the mid-surface. The lines

of principal curvature coincide with the co-ordinate lines. The "gure also shows the stress
resultants M

1
, M

2
, M

6
, N

1
, N

2
and N

6
.

The spherical panel under consideration is composed of N orthotropic layers of uniform
thickness. Let f

k
and f

k~1
be the top and bottom f co-ordinates of the kth lamina. The
Figure 1. Spherical panel element with stress resultants.
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displacement "eld relations according to reference [26] are
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where t is time, (uN , vN , wN ) are displacements along the (m
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, m
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displacements of a point on the middle surface and /
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are the rotations at f"0 of
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axes respectively. The particular

choice of the displacement "eld in equation (1) is dictated by the desire to represent the
transverse shear strains by quadratic functions of the thickness co-ordinate f and by the
requirement that the transverse normal strains be zero.

With the above conditions the following relations are obtained:
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where a
1

and a
2

are the surface metrics [26] and h is the thickness of the laminate.
Substituting equation (2) into equation (1), we obtain
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This displacement "eld, equation (3), is used to compute the stresses and strains. The
equations of motion are derived using the dynamic analog of the principle of virtual work.

The strain-displacement relations using equation (3) with reference to curvilinear
co-ordinate system are
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and f are axial, circumferential and radial Cartesian co-ordinates respectively
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The stress}strain relations for the kth lamina are given by
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where Q(k)
ij

are the material constants of the kth lamina in the laminate co-ordinate
system [26].

The equation of motions for forced vibrations of panels including e!ects of transverse
shear and rotatory inertia may be written using the principle of virtual work [26] as
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where q (x
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, t) is the distributed transverse load and, N
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, etc. are the stress resultants

given by
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where o is the mass per unit volume.
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The stress resultants are obtained by summing contributions of the individual layer. This
yields
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, etc. are the laminate sti!nesses expressed as
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For cross-ply spherical panels, the following laminate sti!nesses are identically equal to
zero
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2.2. FREE VIBRATION

The free vibration condition is obtained by setting the forcing term to zero in the
governing equation (7). That is
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The equations of motion may now be arranged as
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where K"[u v w /
1

/
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]T. The symmetric operators ¸

ij
are listed in Appendix A. These are

random in nature as these involve the random material properties. Consequently, equation
(15) is an equation in random variables and parameters.

2.3. EIGENPROBLEM SOLUTION

The solution technique changes with the edge support conditions of the panel. When two
opposite edges are simply supported with other two side edges having combination of free,
"xed and simple support, a Levy-type closed-form solution is possible in conjunction with
state-space approach. A detailed sequence of steps is outlined below for such a problem to
obtain the second order statistics of the natural frequencies and mode shapes.

For those combinations of edge supports that are not amenable to exact solution
approach, equation (15) can be transformed to a generalized eigenvalue problem by using
approaches like series solutions, approximate energy and variational methods, "nite
element method and other numerical techniques. Beyond this point the steps required for
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the statistics of the natural frequencies and mode shapes would be the same as those
presented below for the exact solutions.

2.3.1. Exact solutions approach

The state-space concept [27, 28] is used to analyze the free vibration problem of cross-ply
spherical panels. The edges x

2
"0 and b are assumed to be simply supported, while the

remaining ones x
1
"0 and x

2
"a may have an arbitrary combination of free, clamped, and

simply supported edge conditions. We express the generalized displacements as products of
undetermined functions and known trigonometric functions so as to satisfy identically the
simply supported boundary conditions at x

2
"0 and b:
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written as
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Substitution of equation (17) into equation (15) yields equations dependent on space
co-ordinates only. These are put in the state-space form to allow use of standard solution
expressions. For this, the following variables are introduced:
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where primes over the variables indicate di!erentiation with respect to x
1
. The system

equation takes the form

Z@"AZ , (20)

where matrix A depends on the system sti!ness, rotatory inertia and wavelength parameters
and hence is random.

A formal solution to equation (20) is given by [27, 28]
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The value of n is 12. Here j
i
denotes the eigenvalues of A and S is the modal column matrix

of eigenvectors of A.
Substitution of equation (21) into boundary conditions associated with the remaining

two opposite edges x
1
"0 and a, results in a homogeneous system of equations which can

be rearranged into the generalized eigenvalue problem form

KD"jMD, (23)

where K and M are real symmetric sti!ness and inertia matrices, and D is the mode shape
and j"u2 with u being the frequency of natural vibration.

2.3.1.1. Boundary conditions. The boundary conditions for simply supported (S), clamped
(C), and free (F) at the edges x
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The sti!ness matrix K is random in nature, being dependent on the system material
properties. Therefore, the eigenvalues j and natural frequency u are random. Hence
eigenvectors and the associated displacement shape functions are also rendered random.
The solution approach presented attempts to obtain the statistics of these characteristics.

2.3.1.2. Second order statistics of the eigensolution2perturbation approach. Without any
loss of generality the random variables may be split up as the sum of a mean and
a zero-mean random part.
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The over bar denotes the mean and superscript &r1 denotes the zero-mean random part of the
variables. Consider now a class of problems where the random variation is small as
compared with the mean part of the material properties. This is observed in most
engineering applications including composites. Further, it is quite logical to assume that the
dispersion in derived quantities like j, u, D and K are also small as compared to their mean
values.

Substituting equations (24) into equation (23), expanding, collecting the same order of
magnitude terms, we obtain for zero and "rst orders:
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Equation (26) is a deterministic equation relating the mean quantities and is the same as
that obtained in the deterministic analysis. The mean eigenvalues and corresponding mean
eigenvectors can be determined by conventional eigensolution procedures [27].

For the all-distinct eigenvalues, the normalized eigenvectors meet the orthogonality
conditions
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The mean eigenvectors form a complete orthonormal set and any vector in the space can

be expressed as its linear combination. Hence, the ith random part of the eigenvectors can
be written as [27]
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+
j/1

g j
i
gN
j
, i"1, 2,2 , l (34)

We get the l eigenvectors D1
i
, i"1, 2,2 , l, and Dr

k
can be expressed by

Dr
k G

"

n
+
j/1

D1
j

D1 T
j
KrD1

k
j1
k
!j1

j

, k"i, i#1,2, i#l!1, j"1,2, i#1,2 , n

"0, k, j"i ,2, i#l!1, jOk
(35)

For the present case j, u, D and K are random because the material properties, as detailed
earlier, are random. Let b

1
, b

2
,2 , b

m
denote the random material properties. The b

j
can



330 B. N. SINGH E¹ A¸.
also be expressed as

b
j
"b1

j
#br

j
. (36)

According to "rst order Taylor's rule, when br
j
are small compared with their mean values,

we can expand the dependent quantities j, D and K about their mean values, giving their
random parts as

jr
i
"

m
+
j/1

j1
i,j

br
j
, Dr

i
"

m
+
j/1

D1
i,j

br
j
, Kr"

m
+
j/1

K1
,j
br
j
, (37)

where , j denotes partial di!erentiation with respect to b
j
and the derivatives are evaluated

at b1
j
.

For the distinct eigenvalue systems, we have [27]

j1
i,j
"D1 T

i
K1

,j
D1

i
, (38)

D1
i,j
"

n
+
s/1
sOi

D1
s

D1 T
s
K

,j
D1
i

j1
i
!j1

s

. (39)

For the multiple eigenvalue system, j1
i,j

satis"es the following equation:

Ag!jM
i,j

Cg"0, (40)

where C is the same matrix as in equation (32). The elements of A are

A
rs
"gN T

r
K1

,j
gN
s
, r, s"1, 2,2, l. (41)

D1
i,j

can be expressed as

D1
i,j
"

n
+
s/1

DM
s

DM T
s
K

,j
D1

i
j1
i
!j1

s

, sOi, i#1,2 , i#l!1. (42)

Using equations (37) the eigenvalue and mode shape covariance [29, 30] are obtained as

<ar (j
i
)"

m
+
j/1

m
+
k/1

jM
i,j

j1
i,k

Cov(b
j
, b

k
) , <ar (D

i
D*T
i

)"
m
+
j/1

m
+
k/1

D1 l
i,j

D1 l
i,k

Cov(b
j
, b

k
), (43)

where Cov(b
j
, b

k
) is the covariance between b

j
and b

k
. The variances of j

i
and D

i
can be

evaluated from equation (43) with the help of equations (38), (39), (41) and (42).

3. RESULTS AND DISCUSSION

The outlined approach is validated by comparison with MCS results and then used to
evaluate the second order statistics for the natural frequencies of two layer antisymmetric
cross-ply [03/903] graphite}epoxy spherical panels with SSSS, SCSC, SSSC, SFSS, and
SFSC boundary conditions. The lamina material properties E

11
, E

22
, G

12
, G

13
, G

23
and



Figure 2. Comparison of results from Monte-Carlo simulation with the present approach, [0/90/90/03]
laminate, with R/a"5, a/b"1 and a/h"10 for SSSS. Key: e, "rst mode; #, second mode; h, third mode;
], fourth mode; n, "fth mode. **, PT; ) ) ) ) ) ), MCS.
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l
12

are modelled as basic RVs. Here E
11

and E
22

are longitudinal elastic and transverse
elastic moduli respectively. G

12
is in-plane shear modulus, G

13
and G

23
are out-of-plane

moduli and l
12

is the Poisson ratio. The relationship between their mean values is assumed
to be as follows [26]:

EM
11
"25EM

22
, GM

12
"G1

13
"0)5EM

22
, GM

23
"0)2EM

22
, l6

12
"0)25, o"1.

3.1. VALIDATION STUDY

The results obtained by the outlined approach have been compared with MCS. Figure 2
shows the comparison for a [0/90/90/03] laminate with R/a"5, a/b"1, a/h"10 and only
E
11

is assumed as random, other material properties being deterministic for all edges simply
supported (SSSS). For the MCS technique, the material property samples are obtained by
generating a set of random numbers to "t the desired mean, and standard deviation (SD).
The number of samples simulated for simulation based on convergence is 15 000. These
values are used in equation (23), which is solved repeatedly to generate a sample of the
natural frequencies. This sample is processed to obtain the second order statistics of the "rst
"ve natural frequencies. For the range of SD considered in the variable E

11
the results from

the present approach come very close to MCS results. One can conclude that the FOPT
adopted for the present analysis is su$cient to give accurate results for the level of
variations considered in the basic random variables.

3.2. TWO LAYERED ANTISYMMETRIC CROSS-PLY [0/903] LAMINATE

The e!ect of the randomness in the material properties on the panel natural frequency has
been obtained by allowing the ratio of the SD to mean to vary from 0 to 20% for laminated
cross-ply [0/903] spherical panels with R

1
"R

2
"R. All the variances have been

normalized with the corresponding mean values. The panel geometry used is R/a"5,
a/b"1 and a/h"10. Results have been obtained for the mean and the variances of the
natural frequencies and mode shapes for di!erent edge support conditions.



TABLE 1

Non-dimensionalized mean natural frequencies of laminated spherical panels with
R

1
"R

2
"R, a/b"1, a/h"10, R/a"5 and -"(u a2Jo/E

22
)/h: Stacking sequence:

[0/903] for all edges simply supported (SSSS)

Natural frequency, -

Mode 1 2 3 4 5

- 9)3412 22)0381 22)2027 30)4377 39)9879

TABLE 2

Non-dimensionalized mean fundamental frequency of [0/903] spherical panels with
R

1
"R

2
"R and R/a"5, a/b"1, a/h"10 and -"(ua2Jo/E

22
)/h with various

boundary conditions

Fundamental frequency, -

SCSC SSSC SFSS SFSC SSSS

14)5235 14)4838 6)4025 6)4245 9)3412

Figure 3. Variation of SD of the "rst "ve natural frequencies with SD of basic material properties, [0/903]
laminate, R/a"5, a/h"10 and a/b"1, with all basic material properties changing simultaneously for SSSS.
Key: as in Figure 2.

332 B. N. SINGH E¹ A¸.
3.2.1. Mean frequency

The mean values of the natural frequencies and mode shapes have been obtained as the
solution of the deterministic eigenvalue problem in equation (26). The frequency has been

non-dimensionalized using material and geometric parameters as -"(ua2Jo/EM
22

/h.
Table 1 shows the "rst "ve non-dimensionalized mean natural frequencies for the laminate
for all edges simply supported (SSSS). The di!erence in mean natural frequencies between
the "rst and second modes is greater than that for any other consecutive modes. The "rst
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"ve natural frequencies are associated with predominantly radial oscillations as indicated
by the mode shapes (not presented here).

To examine the e!ects of di!erent support conditions on natural frequency, the mean
values of the non-dimensionalized fundamental frequency for the laminate with SCSC,
SSSC, SFSS, and SFSC boundary conditions are presented in Table 2. The results show
that the fundamental frequencies for SCSC and SSSC are greater than that for any other
support conditions. It also shows that the fundamental frequencies for SFSS and SFSC are
smaller than that for any other support conditions.

3.2.2. Frequency variance

The variances of the square of the non-dimensionalized natural frequencies have been
obtained for di!erent SD of the basic material properties. Figure 3 represents the variation
Figure 4. Variation of SD of the "rst "ve natural frequencies with SD of basic material properties. [0/903]
laminate, with R/a"5, a/b"1 and a/h"10 for SSSS. (a) Only E

11
varying; (b) only E

22
varying; (c) only G

12
varying; (d) only G

13
varying; (e) only G

23
varying; (f ) only l

12
varying. Key: as in Figure 2.
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of the normalized SD of the "rst "ve natural frequencies of the laminate to normalized SD
of the material properties for all edges simply supported (SSSS) while Figure 4(a)}(f ) show
the plots with only one material property SD changing at a time, others being held
constant at zero level. This is equivalent to only one property being random while
the others are modelled as deterministic. These graphs show that the change in the
normalized SD of -2 is linear with the change in the material property SD. The
dispersion in the "rst "ve natural frequencies shows close growth rates with simultaneous
variations in the material properties. The e!ect of simultaneous changes in all basic RVs
on the fundamental frequency is found to be greater than that for any other natural
frequencies for the thickness ratio considered. Compared to the others, the fundamental
frequency shows higher sensitivity to the individual variation of E

11
, G

12
, E

22
and l

12
.

Amongst the material properties the e!ects of E
11

on natural frequencies is found to be the
strongest.

For comparison of the e!ect of edge supports Figure 5 shows the variation of the
normalized SD of the non-dimensionalized fundamental frequency of the laminate to SD of
the material properties changing simultaneously for SSSS, SCSC, SSSC, SFSS, and SFSC.
It is observed that the e!ect of simultaneous changes in the material properties on the
fundamental frequency is highest for SFSS and lowest for SSSS. SFSC lies in between SSSC
and SCSC. However, these di!erences in dispersion are very small. It is further observed
that almost equal sensitivity is shown by pairing of SFSS with SFSC and SSSC with SCSC.
Figure 6(a)}(f ) show the variation of the fundamental frequency of the laminate with the
change in only one material property at a given time for SSSS, SCSC, SSSC, SFSS, and
SFSC. From examination of the results, it is observed that the e!ect of E

11
on dispersion in

the fundamental frequency for SFSS and SFSC is the highest while, the dispersions for SSSS
is lowest. It is also observed that the in#uence of G

12
for SSSS is greater compared to any

other support conditions considered in this study. The supports with free boundary condition
are also more sensitive towards changes in E

22
as compared to other boundary conditions. In

general, the fundamental frequency is most a!ected by scatter in E
11

and shows signi"cant
sensitivity to scatter in G

12
, E

22
and G

13
for all support conditions considered. The

fundamental frequency is least a!ected by the changes in l
12

. The SCSC and SSSC are more
sensitive towards changes in G

23
as compared to any other boundary conditions.
Figure 5. Variation of SD of the fundamental frequency with SD of basic material properties. [0/903] laminate,
with R/a"5, a/h"10 and a/b"1, with all basic material properties changing simultaneously. Key: e, SSSS; #,
SCSC; h, SFSC; ], SFSS; n, SSSC.



Figure 6. Variation of SD of the fundamental frequency with SD of basic material properties. [0/903] laminate,
with R/a"5, a/b"1 and a/h"10. (a) Only E

11
varying; (b) only E

22
varying; (c) only G

12
varying; (d) only G

13
varying; (e) only G

23
varying; (f ) only l

12
varying.

Key: as in Figure 5.
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4. CONCLUSIONS

An approach has been outlined and used to evaluate the second order statistics of the
natural frequencies for spherical laminates with rectangular plan form and di!erent edge
support conditions. The following conclusions can be drawn from the results obtained for
graphite}epoxy laminated cross-ply spherical panels.

(1) The SD of the square of the natural frequency changes linearly with SD of the material
properties.

(2) The fundamental frequency is most a!ected by simultaneous changes in SD of the
material properties as compared to subsequent four natural frequencies for simply
supported laminates .
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(3) For the SSSS laminate the e!ect of E
11

is most dominant on dispersion in the natural
frequencies and e!ect of l

12
is least dominant. Out of all the natural frequencies, the

fundamental frequency is most sensitive to changes in E
11

.
(4) The SFSS and SFSC are most sensitive while the SSSS is least sensitive to simultaneous

changes in the material properties.
(5) The e!ect of dispersion in longitudinal elastic modulus, E

11
on the scatter in the

fundamental frequency is most important for all support conditions considered while
the e!ect of l

12
is least important.
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